SOLUTION OF INVERSE PROBLEMS OF HEAT
CONDUCTION BY THE METHOD OF DYNAMIC FILTRATION

O, M, Alifanov, E, A, Artyukhin, UDC 536,24,02
S. N, Loginov, and V, V, Malozemov

The applicability of Kalman's filter equations to the solution of inverse boundary problems of
heat conduction is investigated,

Among the various approaches to the solution of incorrectly stated inverse problems of heat conduction
(IPHC), one can distinguish methods unrelated to restrictions of stability on the guantization step of the initial
differential statement of the problem and methods in which stability is achieved through a certain choice of the
quantization intervals, '

The first group [1, 2] includes algorithms based on a~parametric regularization by Tikhonov's method
of extremal statement of IPHC, as well as algorithms of iterative regularization, In application to boundary
IPHC the latter includes direct approximately analytical and numerical methods employing the principle of
stepwise regularization [1],

The choice of the means of solving practical problems should be based on the consideration of a whole
series of factors allowing for the special features of the statements of the problems, the complexity of the
algorithms, the accuracy of the results, the expenditures of computer time, etc., Such an analysis allows one
to bring out and formulate the conditions of rational practical application of the various methods of solving
IPHC, Below we will discuss some of these questions for the solution of the inverse problem using equations
of dynamic filtration, including a comparison with finite-difference algorithms of the second group.

Kalman's method of optimum dynamic filtration [3, 4] has recently been used rather widely for the solu-
tion of inverse problems of heat conduction {5, 6], This can evidently be explained by the fact that this method
provides a sufficiently economical recurrent scheme of solution of a problem, when one successively deter-
mines the current estimates of the state and parameters of a thermal model, doing so with allowance for random
errors at the input to the system and in the measurements, Moreover, the filter possesses a definite interference
protection, The original form of Kalman's filter does not directly generate regularizion algorithms, however,
Therefore, it is interesting to investigate the possibility of obtaining stable results using an algorithm of opti-
mum dynamic filtration based on the well-known property of stepwise regularization, The present report is
devoted to just this question in application to the solution of inverse boundary problems of heat conduction,

The numerical solution of IPHC implies the approximation of the heat-conduction equation by a difference
analog, in which case the working stability of the algorithm of dynamic filtration starts to depend significantly
on the approximation parameters. The step AFo = aAT/b? in the Fourier number can serve as the parameter
on which the stability of algorithms used for the solution of boundary IPHC depends, One can assume that for
a dynamic filtration algorithm there is some critical value AFoq, of step, and for smaller steps (AFo < AFogy)
the distorting influence of the instability properties of the problem will show up. We set the goal of verifying
this hypothesis, using the method of practical analysis of correctness, and finding estimates of AFog, for a
sufficiently popular statement of IPHC in practice,

Let the temperature at one boundary of a one-dimensional body be reconstructed from temperature mea-
surements at the opposite, thermally insulated boundary, For this problem we adopt the mathematical model
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under the assumption that the initial distribution (2) and the Cauchy conditions (3) and consistent with each other,
1t is required to reconstruct the temperature T(0, 7) from measurements of the temperature T(b, 7). We will
take the thermophysical characteristics of the body as exactly known,

We replace the differential statement of the corresponding direct problem by an approximate difference
analog corresponding to an implicit scheme of approximation of the heat-conduction equation (1),

T —T1] . T ot L TiH]

i=2,3 ..., N—1,
At Ax? ! ()
i=1L2 ..., M,
with discrete boundary conditions
; _ Tt T4 Tk — T
TH =g Av(j 4 1), —Fg—— =20 A ;

where AT = 'rm/ M and Ax = b/N are the steps of the grid in time and in space, In vector notation the finite-
dimensional model of the problem has the form

ST T, (5)
where ® is a three-diagonal matrix of size N x N; T is the vector of temperatures at nodes of the grid,

Numerical solutions of the direct problem inthe range of AFo = 0,1-0.0001 were preliminarily investigated
to determine the influence of the approximation parameters on the convergence of the results, These calcula-
tions were made for the case when the unknown function was assigned in the form T(0, 7) = sin (77/Ty,) and
M = 20, For a constant AFo the numerical solution of the direct problem depends only on the number of nodes
over the spatial coordinate, since

alv _ alv —~ AFoN?*=S, ©
Ax? (bINY

i.e.,' the form and order of the three-diagonal matrix & are conserved for constant values of AFo and N, The
results of the calculations for different A¥o and N are presented in Fig, 1.

To compare the results of solutions at two adjacent grids, we chose the metric

TN, — TN,

M
Ty,

(T (Np), T(Net1)) = , N
where N, is the number of nodes over the spatial coordinate for the n-th grid; n is the serial number of the
grid,

The results of the comparison of solutions in this matrix are presented in Fig, 2a. In Fig. 2b we show
the results of a comparison of solutions using a deviation of the type

8(T (Nu)s T (Nnp1))

(T (No)y T(Nprt)) = S S
n4-1 7 On

2 (8)

where S = AFoN%,

It is seen from Fig, 2a that with an increase in N the solutions almost ceaseto differ from each other:
AFo ~ 107! for N = 15, AFo ~ 10~ for N = 50, AFo ~ 10~ for N = 200, and AFo ~ 10~ for N = 800, From this,
one can calculate the required number of subdivisions over the spatial coordinates, If a smaller N is chosen,
then there is an actual increase in AFo, For example, in solving the direct problem larger values of the tem-
perature Tf, were obtained for AFo = 10~ and N = 5 than for AFo = 10~% and N = 20,

In solving IPHC by Kalman's filtration method we used the equations

STH = T, (9
oPHP" =PI, (10)
K = PP HT(HPH — HT 4 1), (11)
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Fig, 1. Results of solution of the direct pro-
blem of heat conduction: a) AFo = 1071; 1) ¢(7);
2) TN(7); N = 5; 3) 25; b) AFo = 10-3; 4) 20; 5)
100; 6) 284,
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Fig. 2. Results of the comparison of solutions on different grids: 1, 5)
AFo =103 2, 6) 107% 3, 7) 1073; 4, 8) 1074,
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where T!*' and Tf{f ! are the a priori and a posteriori estimates of the temperature vector at the (j + 1)-
th moment; P! and P'Lff oa priori and a posteriori values of the covariation matrix of errors of the
estimates; r, dispersion of the measurement errors; E, a unit matrix; K, amplification ratio of the filter; H,
matrix of the measurement vector, in the given case H = (0, 0, ...,0,1), with a dimensionality (1 x N); @ (AT(j +
1)) are the results of the measurements obtained at the (j + 1)-th moment,

In the algorithm developed for the solution of IPHC the matrix ¢ was not inverted, but the a priori values
of the temperature vector T/*' and the covariation matrix P™! were obtained from Egs. (9) and (10) by
the trial-run method, In order that, in estimating the boundary temperature T(0, 7) of the body, the tempera-
ture TJ follow its variation, in the filter equations one must maintain the amplification ratio at a high enough
level, which was achieved by multiplying the elements along the diagonal of the matrix P’;ﬂ' ' by some experi-
mentally determined number,

The results of the calculation of the direct problem served as the initial data for the solution of the in-
verse problem, The initial data were not distorted artificially, and only computer rounding errors were
present, In the calculation on an ES-1033 computer with an ordinary degree of accuracy seven significant
figures were retained in the mantissa of the number, i.e., the rounding errors have the order of 0,000001%,
The calculations showed that under these conditions for AFo = 10-? the graphs of the solution of the IPHC
acquire an oscillatory form, with the oscillations increasing as AFo decreases (Fig, 3). For AFo = 10~ under
the same conditions the solution of the inverse problem of heat conduction coincides sufficiently well with the
reference solution (Fig, 3).

The following conclusions can be drawn from the results of this work,

1. The method of solving IPHC based on dynamic filtration equations with small values of AFo leads to
oscillating solutions far from the solution being sought,

2. By applying the method of stepwise regularization one can obtain stable and sufficiently precise results
if the choice of the time interval from the condition of the required smoothness of the solution (AFo > AF0gp)
is not at variance with the choice of this step from the condition of obtaining the fine structural features of the
function being reconstructed.

3. It is appropriate to use the method of dynamic filtration to solve IPHC for AFo = 102, In comparing
the critical values of the step AFo., obtained in this analysis for the method of solving IPHC using Kalman's
filter and the values of AFogy corresponding to direct numerical methods of solving the inverse problem [1]
one can conclude that at this level the filtration method has no special advantages over the simpler and more
economical determinate numerical methods, Thus, for a difference algorithm for reconstructing the heat flux
density based on an implicit scheme of approximation of the inverse boundary problem, an estimate of the
critical step gives A}i‘of,fr = 1072 [7], while with a transition to the problem of reconstructing the surface tem-
perature of the body, analogous to that considered above, the critical step for this scheme is decreased by two
to three times more compared with the estimate presented for AFogr .

4, In the solution of IPHC the choice of the quantization step along the spatial coordinate must be made
consistent with the value of AFo,

It must also be mentioned that the quantity AFo, increases upon the artificial introduction of fluctuational
errors into the values of the function ¢ (7). The question of the connection between the critical step and the
magnitude and form of the errors in the initial data requires a separate analysis,

NOTATION

Fo, Fourier number; a, coefficient of thermal diffusivity; 7, time; AT, calculated interval of time
quantization; b, distance between boundary and heat sensor; T, temperature; x, spatial coordinate,
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APPROXIMATE SOLUTION OF THE LINEAR HEAT
EQUATION IN HETEROGENEOUS MEDIA

Yu. V., Kalinovskii UDC 536.2

The asymptotic Vishik—Lyusternik method is used to solve the linear heat equations in hetero-
geneous media,

The heat equations in heterogeneous two-component continuous medium have the form [1]:

T, Ti—T, o 0T, | Ty—T,
Ple 29— e ey, L2 1270 o oeT
& o + . wy=ly o + " 2% Al Y 1)

8y = MVC/ MGy, € = Mphg/rmydy.

Equations that are analogous to system (1) describe also the nonstationary filtration of a homogeneous liquid
in crack-porous media [2, 3], We always have the condition &, « 1 [1, 4]; such a condition is not necessary
for €.

In the solution of system (1), one can put &, = 0. However, the solution of the degenerate system thus
obtained can differ considerably from the exact solution of the system (1) near the boundary of the region under
study, This disagreement can be avoided by using the approximate Vishik —Lyusternik method for the solution
of (1) [5, 6]. We consider the method on the example of aone-dimensional problem, In this case werewrite(1) as

oT, *T, T, ?T,
g, — + T, —T,= , —= 4+ Ty—T,=c¢ ,
1 ae + 1 2 ayz ae + 2 1 2 ayz (2)
0=1i/r, y=x/xT.
The initial and boundary conditions are formulated as follows:
9=0: T1=T2=0, ' (3)

y=0: Ty=T,= Ty= const,
y—>oo; Ty=T,=0.

According to the Vishik ~Lyusternik method, the required solution is represented in the form of two terms

7‘i=wi+vi, i=1, 2. (4)

Here wj is the solution of the degenerate system (2):

Ow; 0w, ow,
it 3 Wy — Wy = y ——
& o + W —w,

w,—w; =0 (5)
o 36 + w, 1

with the following initial and boundary conditions:
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